TURBULENCE INVARIANTS IN INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

PMM Vol. 36, N34, 1972, pp. 743-745
E. A. KUZNETSOV
(Novosibirsk)

Invariants of the form

$$
\int\left\langle v_{i}(\mathbf{r}+\mathbf{R}) v_{j}(\mathbf{r})\right\rangle R_{m} R_{n} d \mathbf{R}
$$

were obtained in incompressible hydrodynamics for the case of homogeneous but anisotropic turbulence. The expression $\left\langle v_{i}(\mathbf{r}+\mathbf{R}) v_{j}(\mathbf{r}\rangle\right\rangle$ is the velocity correlation function. This set of the conservation laws represents a generalization of the Loitsianskii [2] invariant for the case of arbitrary homogeneous turbulence. Analogs of these invariants are also found successfully in incompressible magnetohydrodynamics for a homogeneous anisotropic medium. The anisotropy results from the presence of a constant magnetic field H_{0}.

Let us consider the equation of incompressible magnetohydrodynamics, passing to new variables

$$
\begin{align*}
& \frac{\partial v_{i}}{\partial t}-\left(V_{A} \nabla\right) h_{i}=-\nabla_{i} P-\nabla_{k}\left(v_{k} v_{i}-h_{k} h_{i}\right)+v \Delta v_{i} \\
& \frac{\partial h_{i}}{\partial t}-\left(V_{A} \nabla\right) v_{i}=\nabla_{k}\left(h_{k} v_{i}-v_{k} h_{i}\right)+v_{m} \Delta h_{i} \\
& \operatorname{div} \mathbf{v}=\operatorname{div} \mathrm{h}=0 \\
& \mathbf{h}=\frac{\mathbf{H}-\mathbf{H}_{0}}{(4 \pi \rho)^{1 / 2}}, \quad P=\frac{1}{\rho}\left(P+\frac{H^{2}}{8 \pi}\right), \quad v_{m}=\frac{c^{2}}{4 \pi \sigma} \tag{1}
\end{align*}
$$

Here V_{A} is the Alfven velocity, v is viscosity and v_{m} is the magnetic viscosity.
In the following we shall consider the turbulence within the framework of such a system. Since in this system the waves which may propagate in the region of transparency obey the dispersion law $\omega=\left(\mathbf{k} \mathbf{V}_{A}\right)$, it is expedient to call such turbulence the Alfven turbulence.

The turbulence is analyzed with the help of equations which we obtain for the velocity correlation function $R_{i j}{ }^{v}=\left\langle v_{i} v_{j}{ }^{\prime}\right\rangle\left(v_{j}^{\prime} \equiv v_{j}\left(x^{\prime}\right)\right)$ and the magnetic field correlation function $R_{i j}{ }^{h}=\left\langle h_{i} h_{j}{ }^{\prime}\right\rangle$. We note that in the case of homogeneous turbulence all twopoint moments depend only on $r-x-x^{\prime}$. Then from (1) follows

$$
\begin{gather*}
\frac{\partial R_{i j}{ }^{v}}{\partial t}-\left(V_{A} \nabla\right)\left\{\left\langle h_{i} v_{j}^{\prime}\right\rangle-\left\langle h_{j}{ }^{\prime} v_{i}\right\rangle\right\}=-\nabla_{i}\left\langle P v_{j}{ }^{\prime}\right\rangle+\nabla_{j}\left\langle P^{\prime} v_{i}\right\rangle- \\
-\nabla_{l}\left\{\left\langle\left(v_{l} v_{i}--h_{l} h_{i}\right) v_{j}^{\prime}\right\rangle-\left\langle\left(v_{l}^{\prime} v_{j}^{\prime}-h_{i}^{\prime} h_{j}^{\prime}\right) v_{i}\right\rangle+2 v \Delta R_{i j}{ }^{v}\right. \\
\begin{array}{c}
\frac{\partial R_{i j}{ }^{h}}{\partial t}-\left(V_{A} \nabla\right)\left\{\left\langle v_{i} h_{j}^{\prime}\right\rangle-\left\langle v_{j}^{\prime} h_{i}\right\rangle\right\}=\nabla_{l}\left\{\left\langle\left(h_{l} v_{i}-v_{l} h_{i}\right) h_{j}^{\prime}\right\rangle-\right. \\
\left.-\left\langle\left(h_{l}^{\prime} v_{j}^{\prime}-v_{j}^{\prime} h_{j}^{\prime}\right) h_{i}\right) h_{i}\right\rangle+2 v_{m} \Delta R_{i j}^{\prime}{ }^{\prime}
\end{array} \tag{2}
\end{gather*}
$$

We eliminate the moments of the form $\left\langle v_{i} h_{j}\right\rangle$ by combining both equations of (2). Performing the Fourier transformation with respect to \mathbf{r} on the resulting equation, we obtain

$$
\begin{equation*}
\frac{\partial R_{i j}^{*}}{\partial t}=-i k_{i} B_{p j}+i k_{j} B_{i p}-i k_{l} B_{i, l j}-i k_{l} B_{l i, j}-2 k^{2}\left(\nu R_{i j}^{r}+v_{m} R_{i j}^{h}\right) \tag{3}
\end{equation*}
$$

$$
\begin{gathered}
h_{i j}^{*}=h_{i j}^{v}: h_{i j}^{\prime} \\
\int\left\langle P v_{j}^{\prime}\right\rangle e^{-i \mathbf{k r}} d \mathbf{r}=B_{p i}(\mathbf{k}) \\
\left.\int\left\{\left\langle\left(v_{l} v_{i}-h_{l} h_{i}\right) v_{j}^{\prime}\right\rangle-\left\langle h_{l} v_{i}-v_{l}^{h_{i}}\right) h_{j}\right\rangle\right\} e^{-i \overrightarrow{\mathbf{r}}} d \mathbf{r}=B_{l i, j}(\mathbf{k})
\end{gathered}
$$

By the third and fourth equation of (1) the correlation functions of the form $\left\langle\ldots, v_{j}^{\prime}\right\rangle$ $\left\langle. ., h_{j}{ }^{\prime}\right\rangle$ have the following property:

$$
\begin{equation*}
k_{j}\left\langle\ldots v_{j}^{\prime}\right\rangle_{k}=0, k_{j}\left\langle\ldots, h_{j}^{\prime}\right\rangle=0 \tag{4}
\end{equation*}
$$

Using this property we obtain

$$
\begin{gather*}
k^{2} B_{p j}(k)=-k_{l} k_{i} B_{l i, j}(k) \\
k^{2} B_{i p}(k)=-k_{l} k_{j} B_{i, l j}(k) \tag{5}
\end{gather*}
$$

We assume the functions $R_{i j}^{v, h}(k), B_{i, l j}(k)$ and $B_{n j}(k)$ have Taylor expansions in \mathbf{k}. We note that these correlation functions contain the scalar P, the polar vector v and the axial vector h. We shall utilize this property in writing the expansions

$$
\begin{aligned}
& R_{i j}^{v, h}(k)=j_{i j, m n}^{v, h} k_{m} k_{n}+\ldots \\
& k_{j} B_{i p}(k)=b_{i j, m n} k_{m} k_{n}+\ldots \\
& k_{l} B_{i, l j}(k)=\Lambda_{i j, m n} k_{m} k_{n}+\ldots
\end{aligned}
$$

From (5) we can conclude that $b_{i j, m n}=-\Lambda_{i j, m n}$, i.e.

$$
\frac{d}{d t}\left(f_{i j, m n}+f_{i j, m n}^{h}\right)=0, f_{i j, m n}=f_{i j, m n}^{v}+f_{i j, m n}^{n}=\mathrm{const}
$$

These invariants written in the coordinate form

$$
f_{i j, m n}=\int\left\{R_{i j}^{r}(\mathbf{r})+R_{i j}^{h}(\mathbf{r})\right\} r_{m} r_{n} d \mathbf{r}
$$

are analogs of the Loitsianskii invariant for Alfven turbulence.
We note that in deriving the invariants we have postulated the analyticity of the functions $R_{i j}(\mathbf{k}, t), B_{i, l j}(\mathbf{k} t)$ and $B_{i, j}(\mathbf{k} t)$ at $k=0$. This means that the correlation functions $R_{i j}(\mathbf{r}, t), B_{i, l j}(\mathbf{r}, t)$ and $B_{i p}(\mathbf{r}, t)$ decay exponentially as $\mathbf{r} \rightarrow \infty$. The above requirement is not always correct. The nonanalyticity of the correlation functions at $k-0$ leads to the fact that in a number of cases (see [3]) the Loitsianskii invariants are not preserved in the nonlinear stage of development of turbulence.

The author thanks V.E. Zakharov for the interest shown.

BIBLIOGRAPHY

1. Batchelor, G.K., The role of big eddies in homogeneous turbulence. Proc. Roy. Soc. Ser. A, Vol. 195, №1043, 1949.
2. Loitsianskii, L. G., Some fundamental regularities of an isotropic turbulent flow. Tr. TsAGI, №440, 1939.
3. Monin, A.S. and Iaglom, A. M., Statistical Hydromechanics. Pt.2, M., "Nauka", 1967.
