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Invariants of the form 

s 
(vi (r -(- R) vj (r)) q,,f$,dR 

were obtained in incompressible hydrodynamics for the case of homogeneous but aniso- 
tropic turbulence. The expression (vi (r -I- R)vf (r)) is the velocity correlation func- 
tion. This set of the conservation laws represents a generalization of the Loitsianskii CL] 
invariant for the case of arbitrary homogeneous turbulence. Analogs of these invariants 

are also found successfully in incompressible magnetohydrodynamics for a homogeneous 

anisotropic medium. The anisotropy results from the presenceof a constant magnetic field H,,. 

Let us consider the equation of incompressible magnetohydrodynamics, passing to new 

variables 8V. 
--((VAV)hi=-VViP-VVI((vlr~i-hkhi))vAvi 
at 

2 - (v,V) vi = V, (hkvi - v&) + v,A$ 
at 

divv=divh=O 

(1) 

Here VA is the Alfven velocity, Y is viscosity and vm is the magnetic viscosity. 
In the following we shall consider the turbulence within the framework of such a sys- 

tem. Since in this system the waves which may propagate in the region of transparency 
obey the dispersion law o = (kVA), it is expedient to call such turbulence the Alfven 
turbulence. 

The turbulence is analyzed with the help of equations which we obtain for the velo- 

city correlation function ~~~~ = (uiu;‘)(vj’3 vj (.c’)) and the magnetic field correlation 
function Rijh = (hihi’). Wenote that in the case of homogeneous turbulence all two- 

point moments depend only on r = z - I’. Then from (1) follows 

8R. .J 
” - (VAV) { (l~iUj’) - (Ilj’Ui)) = - Vi (pvj’) -t vj (“‘i) - 

at 

_ V, (i(~~, vi -- h,hl) ~‘j’) - ((Vl’Vj’ - “,‘hj’) vi) f ‘VARij’ 

13 - (V,V) ((Vihj’) - (2’j’hi>} =V, {((hlvi - ‘lhi) ‘j’) - 
at 

(3 

- ((h,‘~‘j’ - vj’/l,i’) hi) hi> + 2V,A’ij” 

We eliminate the moments of the form (L.ihj’) by combining both equations of (2). Per- 
forming the Fourier transformation with respect to r on the resulting equation, we obtain 

arf..* 
_L!- = - ilziBpj -f- ikjBip 

at 
, ik,Ri,,j - il~,U,,,~ - 2k” (vRijf‘ + vmRijh) (3) 

705 



s (((OfVi - IL,/!,) rj’> - (lipi - Vf’Li) hj’J ,-iG, = B,i j (k) 

By the third and fourth equation of (1) the correlation functions of the form <. . ., c’~‘) 

(. . ., hj’> have the following property: 
h-; (. . . . "j')li =~~ 0, Al (. . ., h,') _ 0 

(4 

Using this property we obtain 
k2Bl,i (k) = - k$iRli, j(k) 

k2Bip (k) = - k/kjBi. ri (k) (:)I 

We assume the functions R$” h(k), Bi,lj (k) and Ul,j (h-) have Taylor expansions in k. 
We note that these correlation functions contain the scalar P, the polar vector r and 

the axial vector h. We shall utilize this property in writing the expansions 

I$’ (k) = f;j,;n km/i, + . . 

IcjRiI, (k) = bij,m,,k,,,kl, t . 

k,Hi,,j (k) = h+,,,&k,, + . . 

From (5) we can conclude that Dij. m,l x - i1ij, ,)tn, i. e. 

& (jij, mn + I;;,,,,, = 0. fij m,L = jFj,,, + f!“. *j.T?l,, = cons1 

These invariants written in the coordinate form 

fij.mn = c c 
[Rijv (r) I- Rijh (P)} rmr,,dr 

are analogs of the Loitsianskii invariant for Alfven turbulence. 

We note that in deriving the invariants we have postulated the analyticity of the func- 

tions Kii (k, t), Lli, lj (kt) and Bi,,(kt) at X- = U. This means that the correlation func- 

tions Hij (P, t), Ui, [j (r, t) and Bi, (r, t) decay exponentially as r + K. The above requi- 

rement is not always correct. The nonanalyticity of the correlation functions at k ~- 0 

leads to the fact that in a number of cases (see [3] ) the Loitsianskii invariants are not 

preserved in the nonlinear stage of development of turbulence. 

The author thanks V. E. Zakharov for the interest shown. 
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